THERMODYNAMICS Lesson Plan (Scenario)

Lesson title: Thermodynamics Subject: Physics Level: Secondary School Suggested time: 3 x 45 minutes

Equipment needed:

- Computers
- Video projector
- Internet connection

Lesson 1 (45 minutes)

Teaching Unit: Introduction to Thermodynamics, Pressure, Temperature, Internal Energy, Heat
 Teaching Methods: discussion, instruction, exercises (online), individual work, collaboration
 Teaching Methodologies: ex-cathedra learning, directive learning, exploratory learning
 Learning Tools: electronic textbook and electronic workbook, slides, forum
 Equipment: computer classroom, projector, internet connection

Lesson Objectives:

Functional:

- students develop their ability of logical thinking
- students develop their ability of pragmatic and meaningful reasoning
- students systematically upgrade their knowledge of basic concepts and their characteristics
- students solve problems from e-workbook independently

Educational:

- students acquire basic concepts, i.e. pressure, temperature, energy, heat
- students systematically upgrade their knowledge

Sequence of Lesson Stages:

- 1. Motivation
- 2. Introduction to the topic
- 3. Main activities
- 4. Exercises (individual)
- 5. Final activities

Teacher's Activities	Student's Activities
1. Motivation	
The teacher presents some examples from	Students listen and watch the presentation and
everyday life to the students	accompanying video material.
(AppliedThermodynamics.pdf). The introduced	
examples are cases of common use of	
thermodynamics, or can be explained by	
principles of thermodynamics.	
2. Introduction to the topic	
The topic is announced: <i>Today's topic is</i>	While listening to the initial motivation, students
thermodynamics. We will learn about	prepare for discussion on the new topic.

temperature, pressure, heat, and internal	
energy. We will perform some simulations and	
also solve exercises to consolidate our	
knowledge.	
3. Main activities	
The teacher explains the first five topics from	Students listen to the explanation, watch
the material (electronic textbook). For each	simulations, try simulations by themselves, and
topic, the teacher first presents the topic, and	actively participate in debate on explanation of
then demonstrates the corresponding	results.
simulations, which are followed by a short	Students do the exercises and answer the
discussion and explanation of results.	questions or solve quizzes. They can compare
Afterwards, the students are given short	their answers and results, and further discuss
exercises and/or few quizzes on that topic.	the topic.
4. Exercises (individual)	
Students are given exercises in the electronic	Students individually solve exercises.
workbook, which they solve individually. The	Students participate in discussion, explaining
correct answers are discussed together.	correct/wrong answers.
5. Final activities	
The teacher uses forum to further discuss the	If students do not finish the exercises, they get
topic, answer the question, counsel students,	these exercises as homework. Students use
and give support regarding their homework.	forum to discuss the correct answers and ask the
	teacher for help.

Lesson 2 (45 minutes)

Teaching Unit: Work, First Law, Entropy, Velocity Distribution, Specific Heat
 Teaching Methods: discussion, instruction, exercises (electronic), individual work, collaboration
 Teaching Methodologies: ex-cathedra learning, directive learning, exploratory learning
 Learning Tools: electronic textbook and electronic workbook, slides, forum
 Equipment: computer classroom, projector, internet connection

Lesson Objectives:

Functional:

- students develop their ability of logical thinking
- students develop their ability of pragmatic and meaningful reasoning
- students systematically upgrade their knowledge of basic concepts and their characteristics
- students solve problems from electronic workbook independently

Educational:

- students acquire basic concepts, i.e. work, First law of thermodynamics, velocity distribution, specific heat
- students get to know interdependences
- students systematically upgrade their knowledge

Sequence of Lesson Stages:

- 1. Motivation
- 2. Introduction to the topic
- 3. Main activities
- 4. Exercises (individual)
- 5. Final activities

Teacher's Activities	Student's Activities
1. Motivation	
The teacher presents some interesting examples	Students listen and watch the presentation and
(HeatWorkEntropy.pdf). The principles of their	accompanying video material.
functioning and other phenomena can be found	
in thermodynamics.	
2. Introduction to the topic	
The topic is announced: <i>Today's topic is</i>	While listening to the initial motivation, students
thermodynamics. We will learn about work, First	prepare for discussion on the new topic.
law of thermodynamics, velocity distribution,	
and specific heat. We will perform some	
simulations and also solve exercises to	
consolidate our knowledge.	
3. Main activities	
The teacher explains the last five topics from the	Students listen to the explanation, watch
material (electronic textbook). For each topic,	simulations, try simulations by themselves, and
the teacher first presents the topic, and then	actively participate in debate on explanation of
demonstrates the corresponding simulations,	results.
which are followed by a short discussion and	Students do the exercises and answer the
explanation of results. Afterwards, the students	questions or solve quizzes. They can compare
are given short exercises and/or few quizzes on	their answers and results, and further discuss
that topic.	the topic.
4. Exercises (individual)	
Students are given exercises in the electronic	Students individually solve exercises.
workbook, which they solve individually. The	Students participate in discussion, explaining
correct answers are discussed together.	correct/wrong answers.
5. Final activities	
The teacher uses forum to further discuss the	If students do not finish the exercises, they get
topic, answer the question, counsel students,	these exercises as homework. Students use
and give support regarding their homework.	forum to discuss the correct answers and ask the
	teacher for help.

Lesson 3 (45 minutes)

Teaching Unit: A gallery of multimedia examples from thermodynamics
Teaching Methods: discussion, instruction, collaboration work, research collaboration over the Web
Teaching Methodologies: ex-cathedra learning, exploratory learning
Learning Tools: forum, Web Collaboration Tools (e.g. Google Docs), Internet resources
Equipment: computer classroom, projector, internet connection

Lesson Objectives:

Functional:

- students develop their ability of Web-based research
- students develop their ability of cooperation and collaboration work
- students develop their ability of critical thinking and analysis
- students document their work and systematically build a collaborative documents Educational:
 - students upgrade their knowledge in thermodynamics

Sequence of Lesson Stages:

- 1. Motivation
- 2. Introduction to the topic
- 3. Setting up the collaboration tools
- 4. Researching using Internet
- 5. Collaborative formation of the final document

Teacher's Activities	Student's Activities
1. Motivation	
The teacher presents collaboration using forum	Students listen and watch the Web presentation.
and collaborating way of documenting (e.g.	
Google Docs).	
2. Introduction to the topic	
The topic is announced: <i>Today we will create a</i>	While listening to the initial motivation, students
collaborative document with multimedia	prepare for the work.
elements (pictures, video, animation) from the	
field of thermodynamics.	
The teacher shows an interesting example on	
the Web. The teacher announces collaborative	
preparation of a joint document.	
3. Setting up the collaboration tools	
The teacher sets up a new topic on the forum.	Students collaborate. They use forum to
The teacher uses forum to answer the student's	coordinate their work, identify thematic groups
questions.	and their coordination (group leaders).
4. Researching using Internet	
The teacher uses forum to answer the question,	Students individually search for interesting pages
give consultations and support.	on the Web, using search engines (e.g. Google)
	and browsing interesting and promising Web
	pages. They use term in thermodynamics (they
	learned in the previous two hours) as keywords
	in the search. They can use some additional
	keywords, such as video, animation, simulation,
	picture, illustration, lecture, tutorial
5. Collaborative formation of the final	
document	Students compose a collaborative document
The teacher uses forum to answer the question,	(using Google Docs, for example) which includes
give consultations and support. At the end, the	links to interesting Web pages and the comment
teacher comments on the prepared document	on these Web pages and their content. The
and goes through it together with the students.	document has to be well structured and capture
	all presented topics on thermodynamics.